Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405978

RESUMO

Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. We recently reported a family with a paternally inherited intragenic ASTN2 duplication with a range of neurodevelopmental disorders, including autism spectrum disorder (ASD), learning difficulties, and speech and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity and repetitive behaviors, altered social behaviors, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors were also prominent in Astn2 cKO animals. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrates a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents (IPSCs) in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.

2.
Cell Rep ; 38(4): 110297, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35081349

RESUMO

Dopaminergic inputs to basal amygdala (BA) instruct learning of motivational salience. This learning depends on intracellular plasticity signals such as cyclic adenosine monophosphate (cAMP), which is regulated by activation of dopamine receptors. We examine the dynamics of dopamine release and downstream signaling during multiple salient events occurring within tens of seconds. We perform real-time tracking and manipulation of cAMP in BA neurons in vitro and in vivo. Optogenetically evoked release of dopamine drives proportional increases in cAMP in almost all BA glutamatergic neurons, suggesting widespread actions of dopamine across neurons preferring positive or negative valence. This cAMP response decreases across trials with short intertrial intervals owing to depression of dopamine release. No such depression is evident when photostimulating cAMP production directly. cAMP and protein kinase A responses to repeated appetitive or aversive stimuli also exhibit pronounced depression. Thus, history-dependent dynamics of dopamine and cAMP may regulate learning of temporally clustered, salient stimuli.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , AMP Cíclico/metabolismo , Dopamina/metabolismo , Aprendizagem/fisiologia , Neurônios/metabolismo , Animais , Feminino , Glutamina/metabolismo , Masculino , Camundongos
3.
Behav Brain Res ; 396: 112884, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871228

RESUMO

Accurate discrimination between safe and dangerous stimuli is essential for survival. Prior research has begun to uncover the neural structures that are necessary for learning this discrimination, but exploration of brain regions involved in this learning process has been mostly limited to males. Recent findings show sex differences in discrimination learning, with reduced fear expression to safe cues in females compared to males. Here, we used male and female Sprague Dawley rats to explore neural activation, as measured by Fos expression, in fear and safety learning related brain regions. Neural activation after fear discrimination (Discrimination) was compared between males and females, as well as with fear conditioned (Fear Only) and stimulus presented (Control) conditions. Correlations of discrimination ability and neural activation were also calculated. We uncovered a correlation between central amygdala (CeA) activation and discrimination abilities in males and females. Anterior medial bed nucleus of the stria terminalis (BNST) was the only region where sex differences in Fos counts were observed in the Discrimination condition, and the only region where neural activation significantly differed between Fear Only and Discrimination conditions. Together, these findings indicate the importance of fear expression circuitry in mediating discrimination responses and generate important questions for future investigation.


Assuntos
Núcleo Central da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Aprendizagem por Discriminação/fisiologia , Medo/fisiologia , Núcleos Septais/fisiologia , Caracteres Sexuais , Animais , Comportamento Animal/fisiologia , Núcleo Central da Amígdala/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Septais/metabolismo
4.
Nat Neurosci ; 22(11): 1820-1833, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31611706

RESUMO

Basal amygdala (BA) neurons guide associative learning via acquisition of responses to stimuli that predict salient appetitive or aversive outcomes. We examined the learning- and state-dependent dynamics of BA neurons and ventral tegmental area (VTA) dopamine (DA) axons that innervate BA (VTADA→BA) using two-photon imaging and photometry in behaving mice. BA neurons did not respond to arbitrary visual stimuli, but acquired responses to stimuli that predicted either rewards or punishments. Most VTADA→BA axons were activated by both rewards and punishments, and they acquired responses to cues predicting these outcomes during learning. Responses to cues predicting food rewards in VTADA→BA axons and BA neurons in hungry mice were strongly attenuated following satiation, while responses to cues predicting unavoidable punishments persisted or increased. Therefore, VTADA→BA axons may provide a reinforcement signal of motivational salience that invigorates adaptive behaviors by promoting learned responses to appetitive or aversive cues in distinct, intermingled sets of BA excitatory neurons.


Assuntos
Tonsila do Cerebelo/fisiologia , Neurônios Dopaminérgicos/fisiologia , Filtro Sensorial/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Sinais (Psicologia) , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiologia , Estimulação Luminosa , Punição , Recompensa , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...